
Optimal Eventual Byzantine Agreement

Protocols with Omission Failures

PODC 2023

Kaya Alpturer1 Joseph Y. Halpern1 Ron van der Meyden2

1Cornell University, USA

2UNSW Sydney, Australia

Eventual Byzantine Agreement (EBA)

There are n agents Agt = {1, . . . , n}, up to t of which are faulty.

Agents have initial preferences for which value (0 or 1) to decide

on. They each can perform an action decidei (v).

We require, for each value v ∈ {0, 1},

• Unique Decision: all agents decide at most once

• Agreement: nonfaulty agents decide on the same value

• Validity: if a nonfaulty agent decides v , then some agent had

initial preference v

• Termination: nonfaulty agents eventually decide

1

Eventual Byzantine Agreement (EBA)

There are n agents Agt = {1, . . . , n}, up to t of which are faulty.

Agents have initial preferences for which value (0 or 1) to decide

on. They each can perform an action decidei (v).

We require, for each value v ∈ {0, 1},

• Unique Decision: all agents decide at most once

• Agreement: nonfaulty agents decide on the same value

• Validity: if a nonfaulty agent decides v , then some agent had

initial preference v

• Termination: nonfaulty agents eventually decide

1

Communication Model

We focus on the round-based, synchronous, message-passing

communication model with omission failures.

• Sending-omission Failures: A faulty agent may omit to send

an arbitrary set of messages in any given round.

2

Designing Optimal Protocols

Dwork and Moses [1990]1 defined a notion of optimality for

Byzantine agreement protocols.

P1 dominates protocol P2: if for all corresponding runs r1 and r2,

for all agents j , we have dt1(r1) ≤ dt2(r2), where dti (ri) is the

decision time of agent j running Pi in run ri .

• A run r1 of P1 corresponds to a run r2 of P2 if r1 and r2 agree
on all agents’ inputs and the failure pattern

• which agents are faulty and which of their messsages are sent

1
C. Dwork and Y. Moses. 1990. Knowledge and common knowledge in a Byzantine environment: crash failures.

Information and Computation 88, 2 (1990), 156–186.

3

Designing Optimal Protocols

Optimal protocols:

• For EBA, optimal protocols are the ones that are not
dominated by any other protocol.

• E.g., there is an optimal protocol where (roughly speaking)

agents decide 0 as soon as possible, and one where agents

decide 1 as soon as possible

• neither dominates the other

decide 0 as soon as possible decide 1 as soon as possible

P P ′ P ′′

...
...

...

4

Designing Optimal Protocols

Optimal protocols:

• For EBA, optimal protocols are the ones that are not
dominated by any other protocol.

• E.g., there is an optimal protocol where (roughly speaking)

agents decide 0 as soon as possible, and one where agents

decide 1 as soon as possible

• neither dominates the other

decide 0 as soon as possible decide 1 as soon as possible

P P ′ P ′′

...
...

...

4

Working with Limited Information

How much information should the agents send with each message

if we want to design an optimal protocol?

Typical methodology: Without loss of generality, use a

full-information protocol, then find the best decision rule.

But full information is costly, especially with limited bandwidth.

• What happens if we limit information exchange?

5

Working with Limited Information

How much information should the agents send with each message

if we want to design an optimal protocol?

Typical methodology: Without loss of generality, use a

full-information protocol, then find the best decision rule.

But full information is costly, especially with limited bandwidth.

• What happens if we limit information exchange?

5

Working with Limited Information

How much information should the agents send with each message

if we want to design an optimal protocol?

Typical methodology: Without loss of generality, use a

full-information protocol, then find the best decision rule.

But full information is costly, especially with limited bandwidth.

• What happens if we limit information exchange?

5

Our Main Idea

We can describe a protocol in terms of two separate components:

• the information-exchange protocol

• determines what information is exchanged

• the action protocol,

• determines when to decide on a value.

BA Protocol

action protocol P information-exchange protocol E

A protocol P is optimal w.r.t. an information-exchange protocol E
if P is optimal amongst protocols that use E .

6

Our Main Idea

We can describe a protocol in terms of two separate components:

• the information-exchange protocol

• determines what information is exchanged

• the action protocol,

• determines when to decide on a value.

BA Protocol

action protocol P information-exchange protocol E

A protocol P is optimal w.r.t. an information-exchange protocol E
if P is optimal amongst protocols that use E .

6

Our Results

• We provide a knowledge-based program P0 that gives an

optimal protocol in two limited-information settings.

• We a provide a knowledge-based program P1 that generalizes

P0 and gives an optimal protocol w.r.t. full-information

exchange.

• Moreover, P1 is implementable in polynomial time, which

shows that a polynomial-time optimal protocol for EBA with

omission failures exists, settling a question left open by

Halpern, Moses, and Waarts2 (HMW from now on).

2
J. Y. Halpern, Y. Moses, and O. Waarts. 2001. A characterization of eventual Byzantine agreement. SIAM J.

Comput. 31, 3 (2001), 838–865. https://doi.org/10.1137/S0097539798340217

7

Our Results

• We provide a knowledge-based program P0 that gives an

optimal protocol in two limited-information settings.

• We a provide a knowledge-based program P1 that generalizes

P0 and gives an optimal protocol w.r.t. full-information

exchange.

• Moreover, P1 is implementable in polynomial time, which

shows that a polynomial-time optimal protocol for EBA with

omission failures exists, settling a question left open by

Halpern, Moses, and Waarts2 (HMW from now on).

2
J. Y. Halpern, Y. Moses, and O. Waarts. 2001. A characterization of eventual Byzantine agreement. SIAM J.

Comput. 31, 3 (2001), 838–865. https://doi.org/10.1137/S0097539798340217

7

Our Results

• We provide a knowledge-based program P0 that gives an

optimal protocol in two limited-information settings.

• We a provide a knowledge-based program P1 that generalizes

P0 and gives an optimal protocol w.r.t. full-information

exchange.

• Moreover, P1 is implementable in polynomial time, which

shows that a polynomial-time optimal protocol for EBA with

omission failures exists, settling a question left open by

Halpern, Moses, and Waarts2 (HMW from now on).

2
J. Y. Halpern, Y. Moses, and O. Waarts. 2001. A characterization of eventual Byzantine agreement. SIAM J.

Comput. 31, 3 (2001), 838–865. https://doi.org/10.1137/S0097539798340217

7

Reasoning about Knowledge

To model these systems semantically, we use the standard

runs-and-systems model [Fagin et al., 1995].3

An interpreted system is a pair I = (R, π).

• R is the set of runs.

• π is an interpretation function that indicates which atomic

propositions are true at each point (r ,m) in the system.

Formally, a run r ∈ R is a function mapping a time m to a global

state r(m):

• a tuple (se , s1, . . . , sn) describing the local state of the

environment and the local state of each agent i ∈ {1, . . . , n}.

3
R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. 1995. Reasoning About Knowledge. MIT Press,

Cambridge, MA. A slightly revised paperback version was published in 2003.

8

Reasoning about Knowledge

To model these systems semantically, we use the standard

runs-and-systems model [Fagin et al., 1995].3

An interpreted system is a pair I = (R, π).

• R is the set of runs.

• π is an interpretation function that indicates which atomic

propositions are true at each point (r ,m) in the system.

Formally, a run r ∈ R is a function mapping a time m to a global

state r(m):

• a tuple (se , s1, . . . , sn) describing the local state of the

environment and the local state of each agent i ∈ {1, . . . , n}.

3
R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. 1995. Reasoning About Knowledge. MIT Press,

Cambridge, MA. A slightly revised paperback version was published in 2003.

8

Reasoning about Knowledge

To model these systems semantically, we use the standard

runs-and-systems model [Fagin et al., 1995].3

An interpreted system is a pair I = (R, π).

• R is the set of runs.

• π is an interpretation function that indicates which atomic

propositions are true at each point (r ,m) in the system.

Formally, a run r ∈ R is a function mapping a time m to a global

state r(m):

• a tuple (se , s1, . . . , sn) describing the local state of the

environment and the local state of each agent i ∈ {1, . . . , n}.
3
R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. 1995. Reasoning About Knowledge. MIT Press,

Cambridge, MA. A slightly revised paperback version was published in 2003.

8

Reasoning about Knowledge

The semantics of the logic is given by I, (r ,m) |= ϕ where ϕ is a

formula. Key definition:

• (I, (r ,m)) |= Kiϕ if (I, (r ′,m)) |= ϕ at all points (r ′,m) such

that i has the same local state in (r ,m) and (r ′,m)

Another useful formula for EBA:

• (I, (r ,m)) |= ∃0 if some agent’s initial state in r is 0.

9

Knowledge-based programs

Knowledge-based programs [Halpern and Fagin, 1985]4 are

high-level abstractions.

• Standard programs are ones where the tests directly depend

on the agent i ’s local state.

• For knowledge-based programs, the tests can be Boolean

combinations of Kiψ

if Ki (∃0) then decidei (0) else . . .

A standard program P implements a knowledge-based program P

in an intepreted system I if the knowledge-based conditions in P

hold at points in I exactly when the standard conditions in P hold.

if init i = 0 ∧ receivedi (0) then decidei (0) else . . .

4
J. Y. Halpern and R. Fagin. 1985. A formal model of knowledge, action, and communication in distributed

systems: preliminary report. In Proc. 4th ACM Symposium on Principles of Distributed Computing. 224–236.

10

Knowledge-based programs

Knowledge-based programs [Halpern and Fagin, 1985]4 are

high-level abstractions.

• Standard programs are ones where the tests directly depend

on the agent i ’s local state.

• For knowledge-based programs, the tests can be Boolean

combinations of Kiψ

if Ki (∃0) then decidei (0) else . . .

A standard program P implements a knowledge-based program P

in an intepreted system I if the knowledge-based conditions in P

hold at points in I exactly when the standard conditions in P hold.

if init i = 0 ∧ receivedi (0) then decidei (0) else . . .
4
J. Y. Halpern and R. Fagin. 1985. A formal model of knowledge, action, and communication in distributed

systems: preliminary report. In Proc. 4th ACM Symposium on Principles of Distributed Computing. 224–236.

10

Crash → omission failures

One idea is to decide 0 agressively [HMW, Castañeda et al., 2014]5

Consider a protocol that decides 0 when Ki (∃0) holds.

• This works for crash failures, but with omission failures we run

into a problem.

• Agent i can’t always decide 0 when Ki (∃0) holds when we

have omission failures.

5
A. Castañeda, Y. A. Gonczorowski, and Y. Moses. 2014. Unbeatable consensus. In Proc. 28th International

Conference on Distributed Computing (DISC ’14). 91–106.

11

Crash → omission failures

One idea is to decide 0 agressively [HMW, Castañeda et al., 2014]5

Consider a protocol that decides 0 when Ki (∃0) holds.

• This works for crash failures, but with omission failures we run

into a problem.

• Agent i can’t always decide 0 when Ki (∃0) holds when we

have omission failures.

5
A. Castañeda, Y. A. Gonczorowski, and Y. Moses. 2014. Unbeatable consensus. In Proc. 28th International

Conference on Distributed Computing (DISC ’14). 91–106.

11

Crash → omission failures

One idea is to decide 0 agressively [HMW, Castañeda et al., 2014]5

Consider a protocol that decides 0 when Ki (∃0) holds.

• This works for crash failures, but with omission failures we run

into a problem.

• Agent i can’t always decide 0 when Ki (∃0) holds when we

have omission failures.

5
A. Castañeda, Y. A. Gonczorowski, and Y. Moses. 2014. Unbeatable consensus. In Proc. 28th International

Conference on Distributed Computing (DISC ’14). 91–106.

11

Knowledge-based program P0

The solution is to decide 0 when we know someone has just

decided 0 in the previous round.

• This means we decide 0 when there is a chain of 0-decisions,

going back to the first round

0

1

1

1

1

d(1)

d(1)

d(0)

d(0)

d(0)

0 time1 2 3 4 5

fa
ul
ty

12

Knowledge-based program P0

The solution is to decide 0 when we know someone has just

decided 0 in the previous round.

• This means we decide 0 when there is a chain of 0-decisions,

going back to the first round

0

1

1

1

1

d(1)

d(1)

d(0)

d(0)

d(0)

0 time1 2 3 4 5

fa
ul
ty

12

Knowledge-based program P0

The solution is to decide 0 when we know someone has just

decided 0 in the previous round.

• This means we decide 0 when there is a chain of 0-decisions,

going back to the first round

0

1

1

1

1

d(1)

d(1)

d(0)

d(0)

d(0)

0 time1 2 3 4 5

fa
ul
ty

12

Knowledge-based program P0

• Agent i decides 0 if i knows that someone just decided 0 or i

has initial preference 0.

• Agent i decides 1 if i knows that no agent is currently

deciding 0.

Program: P0
i

if decided i ̸= ⊥ then noop

else if init i = 0 ∨ Ki (
∨

j∈Agt jdecided j = 0) then decidei (0)

else if Ki (
∧

j∈Agt ¬(deciding j = 0)) then decidei (1)

else noop

This represents the action protocol. We will investigate it with

respect to different information-exchange protocols.

13

Knowledge-based program P0

• Agent i decides 0 if i knows that someone just decided 0 or i

has initial preference 0.

• Agent i decides 1 if i knows that no agent is currently

deciding 0.

Program: P0
i

if decided i ̸= ⊥ then noop

else if init i = 0 ∨ Ki (
∨

j∈Agt jdecided j = 0) then decidei (0)

else if Ki (
∧

j∈Agt ¬(deciding j = 0)) then decidei (1)

else noop

This represents the action protocol. We will investigate it with

respect to different information-exchange protocols.

13

Optimality of P0

In the paper, we give a sufficient condition for the optimality of P0

with respect to different information exchanges.

We then define two limited-information settings, Emin and Ebasic ,
that satisfy this condition.

14

Optimality of P0

In the paper, we give a sufficient condition for the optimality of P0

with respect to different information exchanges.

We then define two limited-information settings, Emin and Ebasic ,
that satisfy this condition.

14

P0 is optimal in two limited-information settings

In Emin, agents keep track only of the time, their initial value,

whether they have decided, and whether they received a message

from another agent.

• Local states:

• time i : records the time

• init i : records the initial preference of the agent

• decided i : records the agent’s decision

• jd i : records whether agent i received a message from an agent

that decided.

• Messages: 0 or 1. Each agent send a message once, only

when they decide.

Now we consider the action protocol that implements P0 with

respect to this information exchange.

15

P0 is optimal in two limited-information settings

In Emin, agents keep track only of the time, their initial value,

whether they have decided, and whether they received a message

from another agent.

• Local states:

• time i : records the time

• init i : records the initial preference of the agent

• decided i : records the agent’s decision

• jd i : records whether agent i received a message from an agent

that decided.

• Messages: 0 or 1. Each agent send a message once, only

when they decide.

Now we consider the action protocol that implements P0 with

respect to this information exchange.

15

P0 is optimal in two limited-information settings

In Emin, agents keep track only of the time, their initial value,

whether they have decided, and whether they received a message

from another agent.

• Local states:

• time i : records the time

• init i : records the initial preference of the agent

• decided i : records the agent’s decision

• jd i : records whether agent i received a message from an agent

that decided.

• Messages: 0 or 1. Each agent send a message once, only

when they decide.

Now we consider the action protocol that implements P0 with

respect to this information exchange.

15

Implementing P0 in Emin

The following standard program implements P0 in Emin:

• agent i decides 0 if it has an initial value of 0 or it received

the message 0 in the previous round.

• agent i decides 1 in round t + 1 if it hasn’t decided 0

Program: Pmin
i

if decided i ̸= ⊥ then noop

else if init i = 0 ∨ jd i = 0 then decidei (0)

else if time i = t + 1 then decidei (1)

else noop

This is just the usual EBA program; it is optimal with

limited-information exchange!

16

Implementing P0 in Emin

The following standard program implements P0 in Emin:

• agent i decides 0 if it has an initial value of 0 or it received

the message 0 in the previous round.

• agent i decides 1 in round t + 1 if it hasn’t decided 0

Program: Pmin
i

if decided i ̸= ⊥ then noop

else if init i = 0 ∨ jd i = 0 then decidei (0)

else if time i = t + 1 then decidei (1)

else noop

This is just the usual EBA program; it is optimal with

limited-information exchange!

16

P0 is optimal in two limited-information settings

In Ebasic , agents keep track of everything in Emin + how many

messages of the form (init, 1) (which encodes “I haven’t heard

about a 0”) they received in the last round.

• Local states: same as in Emin except one additional variable,

• #1i counts the number of messages of the form (init, 1) that i

receives in the previous round.

• Messages: 0, 1 or (init, 1).

• 0 (resp., 1) is sent when the agent decides 0 (resp., 1);

• (init, 1) is sent if the agent hasn’t decided yet.

Now, the action protocol that implements P0 can do better

compared to the action protocol that implements P0 in the

minimal information-exchange.

17

P0 is optimal in two limited-information settings

In Ebasic , agents keep track of everything in Emin + how many

messages of the form (init, 1) (which encodes “I haven’t heard

about a 0”) they received in the last round.

• Local states: same as in Emin except one additional variable,

• #1i counts the number of messages of the form (init, 1) that i

receives in the previous round.

• Messages: 0, 1 or (init, 1).

• 0 (resp., 1) is sent when the agent decides 0 (resp., 1);

• (init, 1) is sent if the agent hasn’t decided yet.

Now, the action protocol that implements P0 can do better

compared to the action protocol that implements P0 in the

minimal information-exchange.

17

Implementing P0 in Ebasic

The following standard program implements P0 in Ebasic :

Now agent i can decide if it hears from enough agents that they

haven’t decided 0.

• This is guaranteed to happen by round t + 1, but may happen

earlier

Program: Pbasic
i

if decided i ̸= ⊥ then noop

else if init i = 0 ∨ jd i = 0 then decidei (0)

else if #1i > n − time i ∨ jd i = 1 then decidei (1)

else noop

18

Implementing P0 in Ebasic

The following standard program implements P0 in Ebasic :

Now agent i can decide if it hears from enough agents that they

haven’t decided 0.

• This is guaranteed to happen by round t + 1, but may happen

earlier

Program: Pbasic
i

if decided i ̸= ⊥ then noop

else if init i = 0 ∨ jd i = 0 then decidei (0)

else if #1i > n − time i ∨ jd i = 1 then decidei (1)

else noop

18

Is P0 optimal w.r.t. full-information exchange?

No.

Example: n = 20, t = 10. Every agent has initial preference 1, and

no faulty agent ever sends a message.

By the end of the first round, all nonfaulty agents know who the

faulty agents are.

By the end of the second round, it is common knowledge among

the nonfaulty agents who the faulty agents are, and that the

nonfaulty agents all started with 1.

• It can be shown that this suffices for the nonfaulty agents to

decide 1 in round 3.

• However, with P0, they don’t decide until round 11

• no agent knows that there is no chain of 0s until round 11.

19

Is P0 optimal w.r.t. full-information exchange?

No.

Example: n = 20, t = 10. Every agent has initial preference 1, and

no faulty agent ever sends a message.

By the end of the first round, all nonfaulty agents know who the

faulty agents are.

By the end of the second round, it is common knowledge among

the nonfaulty agents who the faulty agents are, and that the

nonfaulty agents all started with 1.

• It can be shown that this suffices for the nonfaulty agents to

decide 1 in round 3.

• However, with P0, they don’t decide until round 11

• no agent knows that there is no chain of 0s until round 11.

19

Is P0 optimal w.r.t. full-information exchange?

No.

Example: n = 20, t = 10. Every agent has initial preference 1, and

no faulty agent ever sends a message.

By the end of the first round, all nonfaulty agents know who the

faulty agents are.

By the end of the second round, it is common knowledge among

the nonfaulty agents who the faulty agents are, and that the

nonfaulty agents all started with 1.

• It can be shown that this suffices for the nonfaulty agents to

decide 1 in round 3.

• However, with P0, they don’t decide until round 11

• no agent knows that there is no chain of 0s until round 11.

19

Is P0 optimal w.r.t. full-information exchange?

No.

Example: n = 20, t = 10. Every agent has initial preference 1, and

no faulty agent ever sends a message.

By the end of the first round, all nonfaulty agents know who the

faulty agents are.

By the end of the second round, it is common knowledge among

the nonfaulty agents who the faulty agents are, and that the

nonfaulty agents all started with 1.

• It can be shown that this suffices for the nonfaulty agents to

decide 1 in round 3.

• However, with P0, they don’t decide until round 11

• no agent knows that there is no chain of 0s until round 11.

19

Is P0 optimal w.r.t. full-information exchange?

No.

Example: n = 20, t = 10. Every agent has initial preference 1, and

no faulty agent ever sends a message.

By the end of the first round, all nonfaulty agents know who the

faulty agents are.

By the end of the second round, it is common knowledge among

the nonfaulty agents who the faulty agents are, and that the

nonfaulty agents all started with 1.

• It can be shown that this suffices for the nonfaulty agents to

decide 1 in round 3.

• However, with P0, they don’t decide until round 11

• no agent knows that there is no chain of 0s until round 11.

19

Common knowledge

We can get an optimal protocol in the full-information setting by

taking advantage of common knowledge.

• Every nonfaulty agent knows φ: ENφ

• φ is common knowledge among the nonfaulty agents: CNφ

• All the nonfaulty agents know φ, all the nonfaulty agents know

that all the nonfaulty agents know φ,

CNφ ⇔ ENφ ∧ ENENφ ∧ ENENENφ ∧ · · ·

20

Common knowledge

We can get an optimal protocol in the full-information setting by

taking advantage of common knowledge.

• Every nonfaulty agent knows φ: ENφ

• φ is common knowledge among the nonfaulty agents: CNφ

• All the nonfaulty agents know φ, all the nonfaulty agents know

that all the nonfaulty agents know φ,

CNφ ⇔ ENφ ∧ ENENφ ∧ ENENENφ ∧ · · ·

20

Knowledge-based program P1

We show that a necessary condition for optimality w.r.t.

full-information exchange is:

• if an undecided agent i knows that it is common knowledge

among the nonfaulty agents who the faulty agents are

(CN t-faulty) then it must make a decision.

We can modify P0 to get P1, which makes use of this:

Program: P1
i

if decided i ̸= ⊥ then noop

else if Ki (CN (t-faulty ∧ no-decidedN (1) ∧ ∃0) then decidei (0)

else if Ki (CN (t-faulty ∧ no-decidedN (0) ∧ ∃1)) then decidei (1)

else if init i = 0 ∨ Ki (
∨

j∈Agt jdecided j = 0) then decidei (0)

else if Ki (
∧

j∈Agt ¬(deciding j = 0)) then decidei (1)

else noop

21

Knowledge-based program P1

We show that a necessary condition for optimality w.r.t.

full-information exchange is:

• if an undecided agent i knows that it is common knowledge

among the nonfaulty agents who the faulty agents are

(CN t-faulty) then it must make a decision.

We can modify P0 to get P1, which makes use of this:

Program: P1
i

if decided i ̸= ⊥ then noop

else if Ki (CN (t-faulty ∧ no-decidedN (1) ∧ ∃0) then decidei (0)

else if Ki (CN (t-faulty ∧ no-decidedN (0) ∧ ∃1)) then decidei (1)

else if init i = 0 ∨ Ki (
∨

j∈Agt jdecided j = 0) then decidei (0)

else if Ki (
∧

j∈Agt ¬(deciding j = 0)) then decidei (1)

else noop

21

Knowledge-based program P1

We show that a necessary condition for optimality w.r.t.

full-information exchange is:

• if an undecided agent i knows that it is common knowledge

among the nonfaulty agents who the faulty agents are

(CN t-faulty) then it must make a decision.

We can modify P0 to get P1, which makes use of this:

Program: P1
i

if decided i ̸= ⊥ then noop

else if Ki (CN (t-faulty ∧ no-decidedN (1) ∧ ∃0) then decidei (0)

else if Ki (CN (t-faulty ∧ no-decidedN (0) ∧ ∃1)) then decidei (1)

else if init i = 0 ∨ Ki (
∨

j∈Agt jdecided j = 0) then decidei (0)

else if Ki (
∧

j∈Agt ¬(deciding j = 0)) then decidei (1)

else noop

21

Showing P1 is optimal

In the paper, we show that

• P1 is equivalent to P0 in the limited-exchange settings we

considered earlier

• P1 is also optimal in the full-information exchange setting.

• The proof makes use of the continual common knowledge

operator C⊡
S ϕ introduced by HMW. It is defined analogously

to common knowledge except that ESϕ is replaced by ⊡ESϕ.

• HMW provides a characterization of optimality w.r.t.

full-information exchange in terms of continual common

knowledge.

22

Showing P1 is optimal

In the paper, we show that

• P1 is equivalent to P0 in the limited-exchange settings we

considered earlier

• P1 is also optimal in the full-information exchange setting.

• The proof makes use of the continual common knowledge

operator C⊡
S ϕ introduced by HMW. It is defined analogously

to common knowledge except that ESϕ is replaced by ⊡ESϕ.

• HMW provides a characterization of optimality w.r.t.

full-information exchange in terms of continual common

knowledge.

22

Showing P1 is optimal

In the paper, we show that

• P1 is equivalent to P0 in the limited-exchange settings we

considered earlier

• P1 is also optimal in the full-information exchange setting.

• The proof makes use of the continual common knowledge

operator C⊡
S ϕ introduced by HMW. It is defined analogously

to common knowledge except that ESϕ is replaced by ⊡ESϕ.

• HMW provides a characterization of optimality w.r.t.

full-information exchange in terms of continual common

knowledge.

22

Showing P1 is optimal

In the paper, we show that

• P1 is equivalent to P0 in the limited-exchange settings we

considered earlier

• P1 is also optimal in the full-information exchange setting.

• The proof makes use of the continual common knowledge

operator C⊡
S ϕ introduced by HMW. It is defined analogously

to common knowledge except that ESϕ is replaced by ⊡ESϕ.

• HMW provides a characterization of optimality w.r.t.

full-information exchange in terms of continual common

knowledge.

22

Implementing P1

The continual common knowledge characterization of optimality

w.r.t. full-information introduced by HMW cannot be implemented

efficiently in general.

• But P1 uses only common knowledge, not continual common

knowledge

• P1 does have a polynomial-time implementation Pfip, which

uses the compact communication-graph representation of

[Moses and Tuttle, 1988].6

This shows that there exists polynomial-time protocols for EBA

that are optimal (in general).

6
Y. Moses and M. R. Tuttle. 1988. Programming simultaneous actions using common knowledge. Algorithmica 3

(1988), 121–169. https://doi.org/10.1007/BF01762112.

23

https://doi.org/10.1007/BF01762112

Implementing P1

The continual common knowledge characterization of optimality

w.r.t. full-information introduced by HMW cannot be implemented

efficiently in general.

• But P1 uses only common knowledge, not continual common

knowledge

• P1 does have a polynomial-time implementation Pfip, which

uses the compact communication-graph representation of

[Moses and Tuttle, 1988].6

This shows that there exists polynomial-time protocols for EBA

that are optimal (in general).

6
Y. Moses and M. R. Tuttle. 1988. Programming simultaneous actions using common knowledge. Algorithmica 3

(1988), 121–169. https://doi.org/10.1007/BF01762112.

23

https://doi.org/10.1007/BF01762112

Implementing P1

The continual common knowledge characterization of optimality

w.r.t. full-information introduced by HMW cannot be implemented

efficiently in general.

• But P1 uses only common knowledge, not continual common

knowledge

• P1 does have a polynomial-time implementation Pfip, which

uses the compact communication-graph representation of

[Moses and Tuttle, 1988].6

This shows that there exists polynomial-time protocols for EBA

that are optimal (in general).

6
Y. Moses and M. R. Tuttle. 1988. Programming simultaneous actions using common knowledge. Algorithmica 3

(1988), 121–169. https://doi.org/10.1007/BF01762112.

23

https://doi.org/10.1007/BF01762112

Limited-information vs. full-information exchange

Total number of bits communicated:

• Pmin: n2

• Pbasic : O(n2t)

• Pfip: O(n4t2)

Decision times in a failure-free run:

• If ∃0 in the run, then all agents decide by round 2 in

Pmin,Pbasic ,Pfip.

• If ¬∃0 in the run, then all agents decide by:

• round t + 2 in Pmin

• round 2 in Pbasic ,Pfip

Given the tradeoffs, Pbasic might be preferable to Pfip.

24

Limited-information vs. full-information exchange

Total number of bits communicated:

• Pmin: n2

• Pbasic : O(n2t)

• Pfip: O(n4t2)

Decision times in a failure-free run:

• If ∃0 in the run, then all agents decide by round 2 in

Pmin,Pbasic ,Pfip.

• If ¬∃0 in the run, then all agents decide by:

• round t + 2 in Pmin

• round 2 in Pbasic ,Pfip

Given the tradeoffs, Pbasic might be preferable to Pfip.

24

Further work

• Characterizing optimality with respect to an

information-exchange E .
• Finding other optimal protocols for EBA under omission

failures.

• Investigating optimality w.r.t. limited-information exchange in

other settings.

25

