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Intersections

• Driverless cars will be able to communicate with each other.

• Going through intersections should become much more

efficient, without the need for traffic lights.

• Fault-tolerance is desirable. Solutions need to handle:

• communication failures of driverless cars

• human drivers without wireless communication

• There are many types of intersections:

• The model should capture all of them, and solutions need to

apply broadly.
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Related work

Inefficiency of traffic-light-based intersection management has long

been recognized.

To the best of our knowledge, prior approaches mainly focused on:

• Specific intersection scenarios [RBS21, SSP17].

• Leader-election protocols without communication failures

[FVP+13, FFCa+10].

• Simulation of scenarios [FFCa+10, RBS21].
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Intersection model

• Vehicles are numbered Ag = {1, 2, . . . , . . . } (potentially ∞)

• Incoming lanes are Lin, outgoing lanes are Lout .

• Each vehicle when in front makes a move (ℓin, ℓout).

• A relation O determines which moves are compatible.

((1, 7), (3, 5)) ∈ O

• The arrival schedule of vehicles and their planned moves are

adversarially chosen.
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Intersection model

Two actions available to vehicles are go and noop.

Communication is broadcast based and potentially faulty:

• Each car can broadcast a message within some radius.

• For our protocols, we only assume that this range is large

enough for agents in front to communicate with each other.

• We consider benign communication failures.

Our goal is to find protocols that satisfy these properties:

• Validity: a vehicle executes go only when it is in front

• Safety: if two vehicles execute go, their moves are compatible

• Liveness: if a vehicle is in front, then at some point in the

future it executes go

*Another way to think about this problem is as a generalization of

distributed mutual exclusion
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Overview

• we use the knowledge-based framework of [FHMV95]

• we define optimality criteria for intersection protocols:

→ intuitively, vehicles should never wait unnecessarily

• we give constructions that result in optimal protocols:

→ via a “global” to “local” reduction
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Reasoning about knowledge

To model knowledge we use the standard runs-and-systems model

[FHMV95].

• A run r in our system I is a function mapping a time m to a

global state r(m) which describes the state of the

environment and each vehicle

• At a point (r ,m), we can interpret formulas about the state of

the system.

• Key definition: I, (r ,m) |= Kiϕ if I, (r ′,m′) |= ϕ at all points

(r ′,m′) such that i has the same local state in (r ,m) and

(r ′,m′)
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Reasoning about knowledge

We will design knowledge-based programs where the tests involve

the knowledge of the agents:

if Ki (i is the only agent in front of a lane) then go

else follow traffic lights

We can then find implementations of these programs that only use

standard tests on the local states of each agent

if i did not receive a reply then go

else follow traffic lights

Some useful formulas:

• I, (r ,m) |= going i if i executes go at (r ,m)

• I, (r ,m) |= front i if i is in front its lane at (r ,m)
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Optimality criteria

Intuitive criteria:

• Eliminate unnecessary waiting: there is no point (r ,m) where
some vehicle i waits but its move is compatible with all other
vehicles that went

• Also used in the distributed mutual exclusion literature

Domination-based optimality criteria (from knowledge-based BA

literature):

• A protocol is optimal if there is no other protocol that strictly
dominates it:

• P dominates P ′ if agents in P under the same adversary (i.e.

under the same message failures and vehicle arrival schedule)

always go through the intersection earlier or at the same time

as in P ′.

Are they equivalent?
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the intersection earlier compared to those in P ′.
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Eliminating unnecessary waiting is not always possible but

lexicographical optimality can be achieved under weaker conditions.
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Optimality vs. Lexicographical optimality

Proposition 1: If an intersection protocol P has no unnecessary

waiting with respect to an intersection context γ then P is optimal

with respect to γ.

Proposition 2: There exists an intersection context γ with full

information exchange and no failures and an intersection protocol

P such that P has unnecessary waiting and is optimal with respect

to γ.

Proposition 3: If an intersection protocol P has no unnecessary

waiting with respect to an intersection context γ, then P is

lexicographically optimal with respect to γ.

• The converse is also true (Proposition 4 and 5) if information

exchange is “sufficiently rich” and the decision rule only

depends on agents in front of each queue.
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Intersection policies

We define a “god’s eye” view of the intersection:

• Let an intersection policy σ be a mapping from histories to

sets of “allowed” moves.

• conflict-free: σ always gives compatible moves

• fairness: all possible moves are allowed infinitely often

Knowledge-based program Pσ of an intersection policy:

if Ki (front i ∧ i ’s move is in σ) then go

else noop

Proposition 6: Under some assumptions on the context, if σ is

correct, then the knowledge-based program has implementations

that satisfy Validity and Safety.

Proposition 7: For every protocol P satisfying Validity and Safety

there exists an intersection policy σ such that P implements Pσ.
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Lexicographically optimal protocols

A lexicographically optimal protocol P:

if Ki (front i ∧ (i ’s move is in σ ∨ Vi )) then go

else noop

where Vi holds, roughly speaking, if i is in a lane where its move is

compatible with all other vehicles that are going (breaking ties in

cyclic order).

Intuitively, P allows the following moves:

• all moves permitted by σ

• other moves not in σ in cyclic priority order if each agent

knows that its move is compatible with the moves of all agents

of higher priority (including agents permitted to go by σ).

12
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Lexicographically optimal protocols

Suppose the following hold in the context

• synchrony,

• at all times m, a cyclic priority order is known by all agents

and top priority is assigned to all lanes infinitely often,

• σ is known,

we get the following result:

Proposition 8, 9: There exists a unique implementation of P that

satisfies lexicographical optimality, validity, safety, and liveness.

*For example, if the precedence cycle in a given point (r ,m) is

from k = m mod |Lin| to k + 1 mod |Lin|, k + 2 mod |Lin|, . . . ,
and σ = ∅ we satisfy these assumptions.
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Future directions

• Tolerating stronger adversaries

• Evaluating implementations in other contexts

• Considering strategic behavior

14
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